Ken L. Korth

Ken L. Korth


(DREX)-Director Experiment Station

(UADA)-UA Division of Agriculture

Phone: 479-575-5191

Fax: (479) 575-7601

Download vcard


Visit Website

Plant biotechnology
Expertise and Instrumentation: Molecular plant-insect interactions, pathogen and insect resistance pathways, cellular control of enzymes involved in isoprenoid metabolism 

Research in my lab focuses on interactions of plants and insects. Specifically, we use the tools of molecular biology to examine how plants respond to insect herbivory and to insect-derived factors. These factors can include components of caterpillar saliva or regurgitant. We measure gene transcript levels and the release of volatile compounds in both rice and the model legume Medicago truncatula. We are part of a large scale collaborative project aimed at analysis of the M. truncatula genome. This has resulted in the inclusion of nearly 10,000 expressed sequence tags (ESTs) from insect-damaged leaves into an M. truncatula EST database. A related project in the lab deals with regulation of an enzyme important for the biosynthesis of secondary metabolites known as terpenoids. This class of compounds can contribute as antimicrobial factors in plant species such as rice, potato, and pepper. In addition, many of the induced volatile compounds released from leaves following herbivory are terpenoids. Plant sterols that are beneficial in human diets are also produced through this pathway, and we study ways that plants regulate sterol biosynthesis using rice and Arabidopsis.. 

  • Biotechnology in Agriculture (PLPA 4333) each fall for graduate and upper-level undergraduate students

  • Advanced Plant Pathology (PLPA 5303) Team-Taught - Host-Pathogen Interactions (Spring semester; odd years)

  • B.S.- University of Nebraska-Lincoln (Biological Science) 1987

  • Ph.D.- North Carolina State University (Genetics) 1992 


  • Laney, A.G., Chen, P., Korth, K.L (2018) Interactive effects of aphid feeding and virus infection on host gene expression and volatile compounds in salt-stressed soybean, Glycine max (L.) Merr. J. Arthropod-Plant Inter. doi:10.1007/s11829-017-9590-9
  • Zeng, A., Chen, P., Korth, K.L., Hancock, F., Pereira, A., Brye, K., Wu, C., & Shi, A. (2017) Genome-wide association study (GWAS) of salt tolerance in worldwide soybean germplasm lines. Mol. Breeding 37:30. doi:10.1007/s11032-017-0634-8
  • Klepadlo, M., Chen, P., Shi, A., Mason, R.E., Korth, K.L., Srivastava, V. & Wu. C. (2017) Two Tightly Linked Genes for Soybean Mosaic Virus Resistance in Soybean. Crop Sci. 57:1-10. doi:10.2135/cropsci2016.05.0290
  • Zeng, A., Lara, L., Chen, P., Luan, X., Hancock, F., Korth, K., Brye, K., Pereira, A., and Wu, C. (2017) Quantitative Trait Loci for Chloride Tolerance in ‘Osage’ Soybean. Crop Sci. 57:2345-2353. doi:10.2135/cropsci2016.07.0600
  • Ledesma, F., Lopez, C., Ortiz, D., Chen, P., Korth, K.L., Ishibashi, T., Zeng, A., Orazaly, M., & Florez-Palacios, L. (2016) A Simple Greenhouse Method for Screening Salt Tolerance in Soybean. Crop Science doi: 10.2135/cropsci2015.07.0429
  • Venu, R.C., Madhav, M.S., Sreerekha, M.V., Nobuta, K., Zhang, Y., Peter Carswell, P., Boehm, M.J., Meyers, B.C., Korth, K.L. & Wang, G.L. (2010) Deep and comparative transcriptome analysis of rice plants infested by beet armyworm (Spodoptera exigua) and water weevil (Lissorhoptrus oryzophilus) insects. Rice 3:22-35.
  • Navia-Giné, W.G., Yuan, J.S., Mauromoustakos, A., Murphy, J.B., Chen, F. & Korth, K.L.(2009) Medicago truncatula (E)-β-ocimene synthase is induced by insectherbivory with corresponding increases in emission of volatile ocimene. J. Plant Physiol. Biochem. 47:216-425.
  • Park, S.-H., Doege, S.J., Nakata, P.A. & Korth, K.L. (2009) Medicago truncatula-derived calcium oxalate crystals have a negative impact on chewing insect performance via their physical properties. Entomol. Exper. et Applicat. 131:208-215.
  • Korth, K.L., Doege, S.J., Park, S.-H., Goggin, F.L., Wang, Q., Gomez, S. K., Liu G., Jia L.,& Nakata, P.A. (2006)  Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiol. 141: 188-195.
  • Huang, J., Taylor, J.P., Chen, J.G., Uhrig, J.F., Schnell, D.F., Nakagawa, T., Korth, K.L., & Jones, A.M. (2006) The Plastid Protein THYLAKOID FORMATION1 and the Plasma Membrane G-protein GPA1 Interact in a Novel Sugar Signaling Mechanism in Arabidopsis.  Plant Cell 18: 1226-1238.
  • Korth, K.L., Doege, S.J., Park, S.-H., Goggin, F.L., Wang, Q., Gomez, S. K., Liu G., Jia L., & Nakata, P.A. (2006)  Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiol. 141: 188-195.
  • Bede, J.C. Musser, R.O. Felton, G.W., & Korth, K.L. (2006) Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis.  Plant Mol. Biol. 60:519-531.
  • Edwards, O., Klingler, J., Gao, L., Korth, K., Singh K. (2006) Medicago truncatula interaction with insects. In The Medicago truncatula Handbook, U. Mathesius, ed.,http://www.noble.org/MedicagoHandbook/
  • Gomez, S.K., Cox, M.M., Bede, J.C., Inoue, K., Alborn, H.T., Tumlinson, J.H., and Korth, K.L. (2005). Lepidopteran herbivory and oral factors induce transcripts encoding novel terpene synthases in Medicago truncatula. Arch. Insect Physiol. Bioch. 58:114-127.
  • Wang, Q., Sullivan, R.W. Kight A., Henry R.L., Huang J., Jones A.M., and Korth, K.L. (2004) Deletion of the chloroplast-localized THYLAKOID FORMATION1 gene product in Arabidopsis thaliana leads to deficient thylakoid formation and variegated leaves. Plant Physiol. 136:3594-3604.
  • Korth, K.L. (2003) Profiling plant responses to herbivorous insects. Genome Biology, 4(7): 221.1-221.4
  • Korth, K.L, Jaggard, D.A.W., & Dixon, R.A. (2000) Developmental and light-regulated posttranslational control of 3-hydroxy-3-methylglutaryl-CoA reductase protein. Plant Journal, 23:507-516.
  • Felton, G.W. & Korth, K.L. (2000) Trade-offs between pathogen and herbivore resistance. Current Opinion Plant Biology, 3:309-314.
  • Felton, G.W., Korth, K.L., Bi, J.L., Wesley, S.V., Huhman, D.V., Mathews, M.C., Murphy, J.B., Lamb, C., & Dixon, R.A. (1999). Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Current Biology, 9:317-320